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Synopsis 
A general equation for the true shear rate encountered in calendering non-Newtoiiiaii 

fluids is derived. Based on several constitutive equations (for a power-law, a three- 
constant Oldroyd. and a modified second-order Rivlin-Ericksen fluid), calendering is 
analyzed from the hydrodynamic point of view. The significance of dimensionless 
groups (the Deborah number, the Weisenberg numbers, and the viscoelastic ratio num- 
ber), consisting of rheological and kinematic parameters, is discussed for scaling from 
prototype to production calendering. Correlation of experimental data obtained by 
using laboratory and production calenders is presented, and the scaling criteria obtained 
from the theory are examined. The onset of unstable flow, which causes non-uniform 
internal strain patterns (nerve) in calendered sheeting, is discussed in terms of the 
Weisenberg number. Good and poor calendering regions for a polymer are discussed 
qualitatively by using a dynamic response diagram, and the importance of the overall 
calendering conditions on the final sheeting quality is discussed. 

INTRODUCTION 

A theoretical analysis of fluid flow between a pair of rotating rolls was 
made by Ardichvili’ in 1938 on the basis of the Reynolds lubrication theory 
of Newtonian hydrodynamics. Later Eley,2 G a ~ k e l , ~  Atkinson and 
Nancarrow,* P a ~ l a y , ~  Kneschke; I\icKelvey7 and, more recently, Tokita 
and Whites analyzed the problem of calendering or milling independently. 
Gaskel’s approach is basically similar to that of Ardichvili, but his solutions 
for velocity and pressure distributions between two rolls and for the roll- 
separating force are more elaborate, and he extends the solution to the 
calendering of Bingham plastics. Atkinson and Nancarrow and hlclielvey 
treat the problem of calendering power-law fluids. Paslay’s analysis is 
essentially based on Oldroyd’s fluid models.10 with three rheological con- 
stants. Although the results of Paslay’s analysis indicate how certain 
parameters of elastic properties are interrelated with the kinematic pa- 
rameters in calendering, he neglects the normal stress effects in the equa- 
tion of motion. 

Tokita and White reviewed some of these papers in their studies on 
milling several elastomers. They observed a striking dependence of the 
rheological behavior of elastomers on milling temperature. They classify 
the rheological behaviors of elastomers in milling into four different 
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temperature regions. The first two regions discussed by them seem to be 
relatively insignificant in calendering, but the last two regions are of 
interest in calendering. The region in which an elastomer seems like an 
opaque bag is called region 3, and the region in which an elastomer on a 
mill flows like a viscous fluid with little elastic recovery is called region 4. 
In terms of Tobolsky's" method of characterizing the viscoelastic behavior 
of amorphous polymers these regions correspond to the rubbery plateau 
and viscous flow regions. The authors point out the significance of two 
dimensionless groups, the Deborah number and the Weisenberg number, 
which characterize the viscoelastic behavior of the materials in milling or 
calendering. Although they have indicated that the equations of motion 
in milling or calendering viscoelastic materials can be analyzed by using a 
second-order Rivlin-Ericksen asymptotic expansion, the resulting equa- 
tions even without inertia terms are nonlinear, and they have not been able 
to obtain solutions for velocity and pressure distributions or for the 
roll-separating force. 

In our study thermoplastic materials are treated as purely viscous non- 
Newtonian fluids or as non-Newtonian viscoelastic materials. In the 
first case the dependence of apparent viscosity on shear rate is fully 
considered; in the second, which is a modification of the purely viscous 
non-Newtonian fluid, the effect of elastic properties is considered. Also 
included in this study is a dynamic similarity, or scaling, analysis for the 
flow of viscoelastic fluids in geometrically similar calenders. Furthermore, 
experimental data obtained by using a laboratory and a production calender 
are correlated, based on the theory developed, and the scaling criteria 
developed in the theory are examined. 

THEORETICAL DEVELOPMENT 
Calendering is a continuous sheet-forming operation utilizing more than 

a pair of driven rolls, and a mass of softened thermoplastic materials is 
formed into a sheet of uniform thickness.12 When thermoplastic materials 
are calendered, the primary effect occurring in the polymer is laminar shear 
deformation? Usually four equal-size rolls are employed in calendering. 
These rolls are arranged either in inverted L type or inclined Z type, and 
their speed, nip opening, and temperature can be controlled independently. 
The temperatures of the first two rolls are usually kept either a t  the tran- 
sition region or the rubbery-plateau region, whereas the temperatures of 
the last rolls are kept near the viscous-flow region. 

Figure 1 shows a schematic diagram of the last two rolls from which 
the final sheeting comes out. The theoretical development for calendering 
and the pertinent experimental data that will be discussed later all refer 
to these rolls. 

A rheological equation for the simplest type of non-Newtonian behavior, 
in which the complications caused by time of shear and strain are absent, 
may be described by the following equation: 

du/dy = F ( 7 )  (1) 
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Fig. 1. Schematic diagram of calender rolls and coordinates. 

Integrating the above equation for the case of equal roll speeds 

where V is the calender roll speed, T~ is the wall shear stress, and t is a 
dimensionless distance in calendering direction. The volumetric flow 
rate per unit width of sheeting can be obtained by integrating eq. (2). 

Q = 2Stwu dy 
0 

It is interesting to notice in eq. (3) that the flow rate consists of two 
terms; the first term on the right side of the equation is due to the drag 
flow and is independent of the rheological properties, whereas the second 
term is due to the pressure flow. The second term can be positive or 
negative, depending on the direction of fluid velocity component. If the 
equation of continuity is used, the volume flow rate must be equal to 

Q = 2Vtl = 2Vto(l + t2) (4) 
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where tl is one-half of the sheeting thickness. 
into eq. (3) and rearranging, we obtain 

Substituting this equation 

3V(tlZ - t2)/to(1 + t'))" = (3/rw2) TF(T)  d r  (5)  

The term on the left side of the equation has a dimension equivalent to 
shear rate and is equal to the wall sheai rate for a Newtonian fluid. This 
equation suggests immediately that there are two regions in the nip where 
the shearing rates are zero. These regions occur on both sides of the nip 
where 5 = *El. By differentiating eq. (5) with respect to the wall shear 
stress rw and rearranging we can show that the true shear rate at the wall is 
given by the following equation: 

F(rw) = (3V/to) [(ti' - Sz) / ( l  + tz)21]12/3 + d 111 13V(Ez - ti2)/ 
to(1 + l?)21/(3 d ln TJ 1 (6) 

For a Newtonian fluid the logarithmic term should be equal to unity, 
and eq. (6) reduces to 

T w  = (3V/to)[(E12 - t2) / (1  + WI (7) 
The true shear rate at the wall for non-Newtonian fluids is given by eq. 
(6), which may be written 

~ ( 7 ~ )  = (3~/to)[(t12 - F Z ) / ( ~  + WI ~(2% + 1)/3ni (S) 
where n is the reciprocal of the logarithmic term in eq. (6). Equation (S) 
describes the wall shear rate encountered in calendering in terms of the 
kinematics of calendering and the flow behavior index. The flow behavior 
index n can be obtained from capillary rheometer data by measuring the 
slope of the flow curves plotted on a log-log scale. Examination of eq. (8) 
shows that the maximum shear rate occurs at the nip where f = 0: 

(TL, = ~/to)t12[(2% + ~ 3 4  (9) 

In the determination of the rheological behavior of a thermoplastic 
material with a capillary rheometer, eq. (9) gives an upper limit of the 
shear rate of interest in calendering. 

For an expression for the roll-separating force an equation for the pressure 
distribution has to be obtained. If we neglect inertia and normal stress 
terms in the equation of m ~ t i o n , ' ~ , ~ ~  the pressure is 

where T&), the shear stress at roll surface, is a function of the dimension- 
less distance & If a rheological equation for a polymer is specified, then 
the integration above can be performed. The roll-separating force per 
unit width of sheeting can be obtained by integrating eq. (10) with respect 
to 5 ,  
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CALENDERING POWER-LAW FLUID 

Although calendering power-law fluids has been treated by several 
authors,*.7 a theoretical limitation of the fluid model, its consequence in 
the correlating of experimental data, and a predicted stagnation envelope 
in the forward region of the nip have not been discussed heretofore. 
Furthermore, correlation of experimental data for the roll-separating force 
as a function of calendering variables predicted by this fluid model does 
not appear in the literature. We shall discuss these matters in an orderly 
way, develop an equation for the roll-separating force, and later discuss 
its validity in the correlation of experimental data. 

Inspection of eq. (8) shows that the shearing rates at calender roll surface 
are zero at  [ = f l1 and become maximum at the nip. We find experimen- 
tally that the power-law does not represent the flow behavior of polymer 
melts in range of shear rates of interest. Although the power-law model 
is not satisfactory for the complete analysis of velocity field in calendering, 
it is simple and adequately describes most of the viscous flow behavior 
of many thermoplastic materials over a wide range of shear rates. We 
shall first apply this fluid model to the hydrodynamic analysis of calender- 
ing and later consider several other fluid models for viscoelastic materials. 
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For fluids obeying eq. (12) the momentum equation,laJ4 neglecting the 
inertia terms, reduces to 

bP/bx = Kn Ibu/byln -1 (d2ulby2) (15) 
An expression for the local velocity profile in the polymer between two 
rolls can be obtained by integrating this question: 

u = [K/(dp/bx)I[n/(l + ~ ) I [ ( ~ / K ) ( ~ P / ~ ~ ) Y  + CiI1+(ll") + (72 (16) 
If we assume that two rolls are equal in size and moving at the same velocity 
without slip, the constants C1 and CZ can be evaluated readily, and the 
velocity distribution is 

u = V + [n/(l + ~>][(l/K)(bP/b~)]'~"[y'+~'~"~ - tl+('/")] (17) 
The volume flow rate per unit width of sheeting is obtained by integrating 
eq. (17) with respect to y: 

Pt 

= 2Vtl 

A dimensionless form for the velocity profile can be obtained from eqs. 
(17) and (18) by eliminating the pressure-gradient term: 

u/v = 1 + [(I + W / ( 1  + n>1[(tl2 - t2)/ (1 + f2)2+(1/n)1 

x [(I + t2)1+(1/n) - (y/to)l+(l'*)I (19) 

If n = 1.0 this equation reduces to the velocity profile for Newtonian 
fluids. The equation shows that the maximum velocity at the nip is 

( U / V ) m * x  = 1 + [(2n + 1)/(1 + n)Ih2 (20) 
A schematic diagram of the velocity profiles is shown in Figure 2. Exam- 
ination of eq. (19) reveals some interesting flow patterns around the nip 
area. In the region where - t1 < < + the velocity profile is convex, 
because the pressure gradient is negative. In the region where .$ < - t1 
the pressure gradient becomes positive, and the forward fluid motion is re- 
tarded, causing the velocity profile to be concave. As 5 decreases, a 
point is eventually reached where the fluid velocity at the mid-plane 
becomes zero. This stagnation point is found by setting eq. (19) equal to 
zero at  y = 0: 

t s  = -(ti2 - [(I + n) / (2  + 3n)I)"' (21) 
In the region where E < - ts eq. (19) shows that the velocity component 
changes sign as y varies for a given value of & This suggests that, near the 
mid-plane fluid moves away from the nip of the rolls because the velocity 
components are negative but that near the roll surface the velocity com- 
ponents are positive and the fluid moves toward the nip. The net result 
is a partial circulation of fluid in the region t < -&. This circulation 
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should form closed cellular vortices in the rotating bank. The stream 
function13 for the vortices can be obtained by integrating the velocity 
distribution function given by eq. (19) : 

+ = [2~vto/6(1 + n)1(n~1+("~)(~2 - f12)/( l  + f 2 ) 2 + ( l / n )  

+ [(I + n) + (1 - 2n)t12 - nt21/(1 + P ) }  (22) 

If n = 1, this equation reduces to the stream function obtained by Bergan 
for milling Newtonian fluids.12 Actually, there are an infinite number of 
stagnation points that form an envelope. We shall call this the "stagnation 
envelope." The locus of the stagnation envelope may be obtained from 
eq. (19) by setting it equal to zero and solving for y: 

(~/tlto)~ = (1 + PI( 1 + + n>/(l + 2n) I 
X [(I + f2) / (b2 + f2)]}n/(1+n) (23) 

A schematic diagram of the stagnation envelope is also shown in Figure 2. 
The pressure distribution can be obtained readily from eq. (18). The 

equation can be rearranged into the following form: 

dP/bf = (2KVn/6ton)[(1 + 2n)/nl[(tz - f ~ ~ l ~ - ~ ( f ~  - [I2)/ 

(1 + t2)2n+11 (24) 

Equation (24) shows that the pressure gradients at f = *El are zero. 
Since f l  is defined as the point where the polymer sheeting loses contact with 
the roll surface, the pressure at that point is equal to zero or to a datum 
pressure. Therefore, the maximum pressure occurs shortly before the nip, 
where f = -&. The same result is obtained for Newtonian fluids. 

Integrating eq. (24) with respect to f gives pressures as a function of 
distance in the direction of calendering: 

P = (2KP/bto')[(l + 2n)/n]" 
PE 

This equation shows that the pressure is proportional to the nth power of 
roll speed and inversely proportional to the (n + '/2)th power of the nip 
opening. Comparison of eq. (25) with the equivalent expression for 
Newtonian fluids shows that in calendering non-Newtonian fluids the 
pressure is relatively insensitive to small changes in calendar speed and 
nip opening. Equation (25) cannot be integrated to give an analytical 
form, but a graphical method may be used readily. 

The maximum pressure at f = - f 1  can be calculated from eq. (25)  by 
rearranging to give 
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where .$ = &p. At 5 = -& the equation reduces to 

P,,, = (4KVn/Stun)[(1 + 2n)/npE12n+1 (1 - p " V p / ( l  + '$12p2)2"+1 

(27) 
The pressure a t  the nip, where 5 = 0, is 

Pnir, = (2KVn/Ston) [(l - 2n)/n]nf12"+1 

Equations (27) and (28) show that the pressure at the nip is one-half of 
the maximum ptessure a t  5 = -&, and this relationship is independent 
of the rheoIogicaI properties.' 

The roll-separating force per unit width of sheeting can be obtained 
by integrating equa,tion (25) : 

F/2RW = K(V/i$)"[(l + 2n)/n]" 

x s,"s,T It2 - t 1 2 I " - - l ( f 2  - t12)dE/dE(1 + t2)zn+1 (29) 

Because of the fractional power appearing in the integrand an analytical 
expression for the roll-separating force cannot be obtained in a closed form. 
However, for a given value of the flow behavior index n eq. (29) can be 

0 

7-- 

Calendering 
direct ion 

I I 1.51 I I I J 
Fig. 3. Dimensionless wall shear stress as a function of dimensionless distance for various 

flow behavior indices. 
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evaluated easily by graphical integration. Therefore, if the composition 
of a polymer to be calendered is kept constant, the last term in the equation 
will be approximately constant for a given calender. This indicates, then, 
that if the roll-separating force per unit width of calendered sheeting is 
plotted against V/to on a log-log scale, a straight line should be obtained 
at  each calendering temperature. 

It should be pointed out here that the validity of the power-law equation 
for calendering cannot be judged by comparing experimentally observed 
roll-separating forces with those calculated from eq. (29). Experimentally 
determined pressure distributions should be compared with the values cal- 
culated by using eq. (25). Agreement between calculated roll-separating 
forces and experimental values does not necessarily mean that the actual 
pressure distribution is the same as predicted by a theoretical equation. 
This point has been overlooked in the past by several  investigator^.'^,^^ 

The shear stress at  the roll surface can be obtained readily by substituting 
eq. (24) into 

= K(V/to)"[(l + 2n)/n]"[lE? - .$12/"-'(E2 - & 2 ) / ( 1  + (2)2"+']  (30) 

Figure 3 shows the dependence of the wall shear stress on dimensionless 
distance for several values of the flow behavior index. 

CALENDERING VISCOELASTIC FLUIDS 

An Oldroyd Fluid 

Oldroyd9 proposed an eight-constant model to describe non-Newtonian 
viscosity, normal stresses, and oscillatory phenomena of incompressible 
fluids. Williams and Birdlo showed that a special three-constant version 
of this model also describes these features. The stress components for the 
three-constant Oldroyd equation are 

uzz = -P + / . IO(Xl  - X2)+2/ (1  + X12-i2) 

u y y  = -P - Po(X1 - X2)+2/ (1  + X22-i2) 

rzv - - PO(1 + XlX,+">i./(l + X22+2) 

(31) 

(32) 

(33) 

where 
retardation times, respectively. 
into the stress equations of motion without inertia terms, we obtain 

is a lower limiting viscosity, and X1 and X2 are relaxation and 
Substitution of these stress components 

( l /po)(dP/bz)  = (b/bs) [(A, - X2)+2/ (1  + XI2*j2) 1 
+ (b/by)[(l + XIX2+2)+/ / (1  + X12+2) (34) 

(35) (l/cco)(bP/by) = (b/b?;)[(Xl - X2>-i2/(l  + h2-i22)1 
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Numerical solutions of eq. (34) without the normal stress term have 
been computed by Paslay for several values of the relaxation time A1 ranging 
from to 3.15 X sec. 

From eqs. (34) and (35) we find that the shear rate must satisfy the 
following relationship : 

(d2/by2) [(l + XlAZ.i")-i/(l + A12.i2) 1 
= 2(b2/ddy) [(A, - A2). i2/( l  + A12i.2) 1 (36) 

Equations (34) and (35) are nonlinear, and analytical expressions for 
velocity and pressure distributions cannot be obtained. However, an ap- 
proximate method of calculating pressure distribution and the resulting 
roll-separating force is to use the velocity distribution for Newtonian fluids. 

We obtain some useful information for scale-up based on these equations. 
If we transform the equations in terms of dimensionless parameters by 
introducing 

v* = u/v 
v** = v/v 

?) = y/(2Rto)I/P 
A,* = xl/e 

,$ = ~/(2Rto)'/ '  A2* = A2/0 

where e is the duration of deformation in calendering and X1* and Az* are 
the ratios of characteristic times to processing time. The significance of this 
ratio, the Deborah number, in processing viscoelastic materials has been 
pointed out by Pawelski's and more recently by White and o t h e r ~ . 8 J ~ , ' ~ ~ ~ ~  

If we introduce these dimensionless variables into eqs. (34) and (35), 
we obtain 

3P/b,$ = po(RI;2/2to)rn(A,* - Xz*) 

x { (bv*brl)2/[i + ~~*~e21;2(~~/2to)(bv*/brl)~1) 
+ Q~~(R/~C)'/~[~ + e2~~*~~*(~~/2to)(bv*/bl1)21(bv*/b~)/ 

[I + ~~*2e21;2(~1;2/2to)(bv*/b~)2] (37) 

x { ( b ~ * / b ~ ) ~ /  [I + ~,*2e2~(~1;2/2to)(bv*/b~)2] ] (38) 

bP/bq = -po(R9/220)rn(t(X1*2 - A1*2) 

where Q is the angular velocity. 
In the scaling of a prototype model based on laboratory calender data, 

if we wish to maintain the polymer residence time e constants, the angular 
roll speed must be kept the same. Under these conditions eqs. (37) and 
(38) show that the pressure distribution will be similar if the ratio of roll 
diameter to nip opening is the same. 

The ratio of normal stress difference to shear stress can be obtained 
readily from eqs. (31), (32), and (33): 

(.,Z - .uu)/7zv = W' rn(R/to)'/' 
x { (xl* - ~,*)(bv*/b~)/ [i + ~~*~~*e~~(~1;2/2to)(bv*/b~)~1 1 (39) 
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This ratio is called the Weisenberg number by White and 
We notice here that maintaining a constant ratio of roll diameter to nip 
opening to obtain the same pressure gradient is equivalent to maintaining 
the same Weisenberg number. The Weisenberg number appears to be an 
important parameter for the onset of non-uniform internal strain patterns 
(nerve) in calendered sheeting. This will be discussed in the Experimental 
section. 

A MODIFIED SECOND-ORDER RIVLIN-ERICKSEN FLUID 
An obvious modification of the power-law model is to use a more sophis- 

ticated constitutive equation, such as the asymptotic expansion of Rivlin- 
Ericksen fluid, as later modified by White and his co-workers21 to take 
into account the shear rate dependence of non-Kewtonian viscosity. The 
modified second-order model results from assuming that the kinematics of 
all past times within the fluid's memory can be described by a truncated 
Taylor series about the present time. This permits removing the kine- 
matic parameters from the hereditary integrals and the expression of stress 
in terms of instantaneous deformation rates and acceleration. The equa- 
tion, which predicts most of the important nonlinear flow aspects, including 
non-Newtonian viscosity and normal stresses, has the form 

u = -PI + K [ l / *  tr B12](n-1)'2 B i + w2Bi2 + ~3B2 (40) 

where K and n denote the usual power-law parameters and w2 and wt are 
additional physical-property parameters that determine the magnitude of 
the normal stress functions in steady laminar shear flow. 

It is really questionable whether such assumptions can be justified in 
calendering polymer melts. The relaxation time of polymer melts at a 
calendering temperature is usually much greater than the duration of 
deformation in calendering. For example, if we were to calender 10 mil 
sheeting with 24in. diameter rolls at  10 ft./min., the average polymer 
residence time between the rolls would be about 2 sec.; this is much smaller 
than the relaxation time of most polymer melts at a processing tem- 
perature.22 

If eq. (40) is substituted into the equation of motion without inertia 
terms for the modified second-order viscoelastic materials, then we have 

V P  = K V .  [i/2 tr B12](n-1)'2 B1 + wzV.Bl2 + w3v.B~ (41) 

On the basis of the order-of-magnitude analysis* the stress components 
They are: can be obtained from eq. (40). 

Tzv - - K(du/by)" + ~ 3 [ ~ ( b ~ y / b ~ b y )  + ~ ~ ( b ~ u / b y ~ )  

+ Z(bu/bx) (du/blJ) ] + . . . (42) 

(43) 

(44) 

ffzz = (W2 - 2w3)(bU/dy)2 + . . . 
uyu = w2(bu/by)2 + . . . 
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Substituting eqs. (42), (43), and (44) into eq. (41), we obtain the equations 
of motion in the x and y directions. They are 

bP/bx = Kn(h/by)"-'(d2u/by2) + ws(b/dy)  [u(b2u/bxby) 

+ v(b2u/by2) t 2(du/bx)(du/by) 1 (45) 

(46) bP/by = 2(wz - 2%) (dulby) (b2u/b?/2) 

I t  should be noticed that eq. (45) reduces to the case of calendering 
power-law fluids, if the rheological constarits for viscoelastic properties 
are zero. 

If we introduce the dimensioriless variables defined previously in eq. (45) , 
we obtain 

(l/K) 1/ [Q"(R/t,) ]"/"bP/ag = [n/ (a)"~l(bV*/bs)"-'(b2V*/bs2) 
- [Nw,/2(R/t~)'-"'"(b/~~) [V*(b2V*/b@s) 

+ Y**(b2V*/b?p) + 2(dY*/dt) (bV*/bs) I 
+ [N,,/(R/to)'-n~21(2 - N,,)(bV*/bs) (b2V*/bEbd (47) 

where N,, = (- 1)(w3/K) (R/SZto),2-n the Weisenberg number, and N,, 
= oz /w3 ,  the viscoelastic ratio number. 
In eq. (47) we find several significant dimensionless parameters; they are 

the Weisenberg number, the viscoelastic ratio number, the flow behavior 
index, and the ratio of roll diameter to nip opening. The physical signifi- 
cance of the Weisenberg number was discussed earlier. The viscoelastic 
ratio number denotes the ratio of forces due to the square of the first 
acceleration tensor to the second acceleration tensor.I6 

If the angular roll speed and the ratio of roll diameter to nip opening 
n ere kept constant between prototype and production calender, this 
would be equivalent to maintaining both the same Weisenberg number and 
the Deborah number. 

Comparison of eqs. (37) and (47) shows that only the viscoelastic ratio 
number does not appear in the former equation. Very little experimental 
data exist for w2, and the significance of this number in processing polymer 
melts is not known. According to WhitelZ3 this ratio appears to be very 
small and may be neglected in eq. (47). 

In the foregoing analyses we have used different fluid models to obtain 
scale-up criteria for calendering. We notice here that, if the constitutive 
equations are relatively simple and yet depict the general viscoelastic 
properties, the resulting criteria are essentially the same. 

EXPERIMENTAL RESULTS AND DISCUSSION 

Polymer and Rheological Properties 

The polymer used in calendering is a high molecular weight cellulose 
acetate derivative with several plasticizers. 
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Fig. 4. Relaxation modulus and low-shear viscosity of a polymer as a fuiictioii of tem- 
perature. 

Capillary rheometer data for the polymer show that the flow behavior 
of the polymer at calendering temperatures follows the power-law equation 
for several orders of magnitude of shear rate. At low shear rates, however, 
the polymer appears to behave like a Bingham plastic rather than a 
Newtonian one. 

Relaxation moduli and low shear viscosities of the polymer as a function 
of temperature are shown in Figure 4. The figure shows that the calender- 
ing temperatures, which ranged from 90 to 140"C., fall in the rubbery 
plateau and viscous-flow regions. The figure gives us some idea of the order 
of magnitude of the polymer relaxation time at these temperatures. 

Polymer Calendering 

The 
roll-separating force, nip opening, and dimensions of calendered sheeting 
were measured at each speed. The resulting data are shown in Figure 5. 
The calender used in obtaining the data shown in this figure has four 

The polymer was calendered at various temperatures and speeds. 
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Fig. 5. Laboratory calender data. The black points represent calender speeds at which 
“nerve” appeared in sheeting. 

equal rolls (8 X 16 in.) with an inverted L-shaped roll arrangement. In 
all experiments the temperature of the feed rolls was kept at 90°C., while 
the temperatures of the last two rolls were varied. The initial nip opening 
at each temperature was measured by inserting several pieces of solder at  
different points across the last two rolls. 

If we assume that the double-integration term in eq. (29) is fairly con- 
stant and independent of roll speeds, a straight-line relationship between 
F/2RW and V/to on a log-log scale should be expected. The slope of 
these lines should be equal to the flow behavior index n, obtained from 
capillary rheometer data. We found that the flow behavior index deter- 
mined from calendering data was slightly lower than that based on capillary 
rheometer data. This discrepancy is caused by a slight increase in nip 
opening due to large roll-separating forces at  increased speeds. The data 
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Fig. 6. Internal strain patterns (nerve) in calendered sheeting. The first number in 
each picture denotes calender speed in feet per minute, and the second denotes tempera- 
ture in degrees centigrade. The scale in each picture represents 1 in. 

in the figure show that the roll-separating force decreases remarkably as 
the temperature is increased. In terms of eq. (29), this is because the 
temperature dependence of the consistency index K follows the Arrhenius 
type of formula. 
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Onset of Nerve and Unstable Flow 

At a given temperature there is a certain speed a t  or above which the 
calendered sheeting showed the so-called nerve when examined with polar- 
ized light. The nerve is due to the non-uniform strain patterns in sheeting. 
As the roll temperature is increased while the nip opening is maintained 
constant, nerve appears at  higher speeds. Figure 5 shows the calendering 
speeds at  which nerve appeared in sheeting at  110 and 125°C. Above 
these temperatures sheeting calendered at  a maximum speed (about 11 
ft./min.) does not show any nerve patterns. l'igure 6 shows several photo- 
graphs of nerve patterns obtained under diff went calendering conditions. 

Above 110°C. these internal strains were found to occur at a constant 
value of F / 2 R  W ,  independent of calendering temperature. However, 
below 110°C. the value decreased as the temperature increased. The 
temperature dependence of the critical roll-separating force (FIBRW), at 
which nerve appears in sheeting seems to be closely related to that of the 
critical wall shear stress at  which melt fracture is observed in a capillary 
rheometer. The critical shear stresses at  which the extrudate surface 
appears distorted were measured by using capillary tubes with different 
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Shear modulus x 10-7 (dynes/cm2) 

Fig. 7. Critical shear stress as a function of shear modulus at the onset of melt fracture 
in capillary extrusion and in calendering. 
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entrance angles. Although the mode of surface distortion appeared to be 
highly dependent on the entrance angle, the stresses at  which the extrudate 
appears distorted were independent of the entrance angle. However, the 
critical stress below 115°C. was highly temperature-dependent. The 
Bagley-Tordella melt-fracture  riter ria^^-^^ do not seem to apply to our 
polymer at  temperatures below 115°C. 

On the conjecture that nerve is due to non-uniform strain patterns and 
that the kinematic mechanism for the onset of these strain patterns is 
similar to the melt-fracture phenomena, we have plotted critical shear 
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Fig. 8. Correlation of prototype and production calender data. 

stresses observed with a capillary rheometer as a function of calculated 
elastic shear m o d u l ~ s ~ ~ ~ ~ ~  at pertinent shear rates. These data are shown 
in Figure 7. In the figure the critical wall shear stresses at the nip calculated 
with the use of eq. (30) are also plotted as a function of shear modulus at  
several calendering conditions. The slope of the line is equal to the recov- 
erable elastic strain at  which nerve appears in the sheeting. According 
to White,2* the recoverable strain is equivalent to the Weisenberg number. 
The calculated elastic strain at  the onset of nerve is about 3.7 and seems to 
be approximately in the same order of magnitude found by other investi- 
g a t o r ~ ~ ~ - ~ ~  for the extrusion of several different polymers through a 
capillary tube. 
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Correlation Between Prototype and Production Calender Data 

The roll-separating force of a small laboratory calender can be correlated 
with a large-sized production calender in terms of angular roll speed. 
Figure 8 shows such correlations for several different thicknesses of sheeting. 
It should be noticed in the figure that sheeting thickness is used instead 
of nip opening. 

In the light of the scaling criteria for calendering viscoelastic materials 
discussed earlier these data show that, as far as roll-separating force as a 
function of roll speed is concerned, it does not seem to be necessary to 
maintain the ratio of roll diameter to nip opening of prototype and produc- 
tion calenders. It seems to be sufficient to maintain the same angular 
speed between laboratory and production calenders. This is equivalent to 
maintaining a constant Deborah number. 

The onset of nerve in production calendering was not investigated in this 
study. However, we believe that the R/to ratio has a significant effect 
on the onset of nerve and the extent and severeness in calendered sheeting. 
This will be further investigated in the future. 

Polymer Calenderability 

The commonly used word “calenderability” is very difficult to define in 
terms of the rheological properties of a given polymer and the kinematics 
of polymer deformation encountered in calendering. There is no doubt 

Constant nip opening 

Temperature : 
T d  T*<---- <T7 

/-- ~ 

In- fi (radians/incb, sec. ) 
t0 

Fig. 9. Schematic diagram of calenderable regions of a polymer. 
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that the chemical composition of polymer plays an important part in 
imparting a good sheeting surface. 

In the past the judgment of calenderability at  a given temperature was 
based largely on the physical quality of the final calendered sheeting and 
on the appearance of the bank and its rotational motion. The physical 
quality was judged according to the amount of troughs and the severeness 
and extent of nerve in the sheeting. These defects were found to be highly 
dependent on roll-separating force, calender speed, temperature, and ap- 
pearance of the bank and its rotational motion. Tearing banks, the seg- 
ment rotating in inconsistent directions, are highly undesirable. In gen- 
eral, a relatively small bank, rotating as shown in Figure 2, with a smooth 
surface is indicative of good calenderability. 

Large roll-separating forces and slow calender speeds were found to be 
essential in eliminating air bubbles. However, we found that the onset of 
nerve was most sensitive to calendering temperature. It appears that 
nerve is similar to the melt-fracture phenomena commonly observed in 
extruding polymer melts. 

From our study we can now define a good calenderability region of a 
given polymer in a more precise manner. Figure 9 shows a schematic 
diagram of several different calenderability regions. In the figure a family 
of straight lines at  each temperature can be constructed on the basis of 
eq. (29). These lines are divided by two envelopes; the upper one may be 
called a trough envelope and the lower one a nerve envelope. It is possible 
to locate the trough envelope in the diagram based on the hydrodynamic 
treatment of air-bubble deformation in highly viscous fluid. However, the 
nerve envelope cannot be located theoretically until we know more about 
the kinematics of deformation of viscoelastic materials. 

Let us consider points P1 and PI1 shown in the diagram. The calendering 
condition at  P1 may correspond to feed rolls that are kept at  relatively low 
temperature. The polymer at  P1 will eventually pass the final rolls at  P’1. 
The temperature at this point is higher than PI, while the nip opening is 
less than the feed rolls, Since PI falls in the region 1 below the nerve 
envelope, the final sheeting should be free of nerves and troughs. Consider, 
however, P2 and PI2 at different calendering speeds. The calendering 
conditions of the last rolls is such that P’2 falls in region 2, where nerve 
appears in sheeting but no troughs appear. Region 3 would be the most 
undesirable for calendering, since sheeting produced in this region would 
show severe nerve patterns and troughs. This shows how the operating 
conditions of rolls before the final rolls are made affects the quality of 
final products. 

I am grateful to my colleagues of the Parlin Research and Development Division, 
E. I. Du Pont de Nemours & Co., Inc., for their interest in the publication of this work. 
I am indebted to M. F. Valania for his suggestions and assistance in the experimental 
portion of this work. 
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e 
P 
R 
l0 

t, 
I.V 
6 
E 
U 

Nomenclature 
Strain tensor 
Hydrostatic pressure 
Roll radius 
One half of nip opening 
= to (1 + E e ) ,  curvature of roll surface 
Sheeting width 
= y/(2Rto)1’2 dimensionless 
= 2/(2Rt1)”2 dimensionless. 
Stress tensor 

Only those notations which are not defined in the text are listed here. 
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Rbsum6 
Une bqnation generale pour la vitesse de cisaillement vrai rencontrde au cows dn 

ralandrage de flnides non-Newtoniens a Btb d6dliite. Siir la base de pliisienrs dqiiations 
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de constitution, le calandrage est analys6 du point de vile hydrodynamique. La significa- 
tion des groupes sans dimensions (le nombre de Deborah, les nombres de Weisenberg, e t  
le nombre du rapport viscoelastique) contenant des parambtres rhbologiques e t  c inb 
matiques est discut6e pour passer du prototype au calandrage de production. La corr6la- 
tion des r6sultats experimentam obtenus en utilisant des calandres de laboratoire e t  de 
production est prbent6e e t  des criares obtenus au depart de la th6orie sont examin&. 
Le debut de l’bcoulement instable qui cause des rbeaux de tension internes non-uni- 
formes au course de la formation de feuilles par calandrage est discute sur la base du 
nombre de Weisenberg. Les regions de calendrage bonnes et pauvres pour uu polymkre 
sont d i s c u t h  qualitativement en utilisant le diagramme de reponse dynamique et  
l’importance des conditions generales de calandrage sur la qiialit.6 des feuilles finalement 
obt,ennes est discutee. 

Zusammenfassung 
Fur die wahre Schergeschwindigkeit, die beim Kalandern nicht-Newtonscher Flussig- 

keiten auftritt, wurde eine allgemeine Gleichung abgeleitet. Das Kalandern wird, vom 
hydrodynamischen Gesichtspunkt aus, auf der Basis verschiedener grundlegender 
Gleichungen (fur eine Potenzgesetz-, eine drei-Konstanten-Oldroyed- und eine modifi- 
zierte Rivlin-Ericksen-Flussigkeit zweiter Ordnung) analysiert. Die Bedeutung der aus 
rheologischen und kinematischen Parametern bestehenden dimensionslosen Gruppen 
(der Deborah-Zahl, der Weisenberg-Zahlen und der viakoelastischen Verhaltniszahl) 
beim Ubergang vom prototypischen zum prodnktionsmassigen Kalandern wird disku- 
tiert. Es wird eine Korrelation der mittels Labor- und Produktionskalandern ermittelten 
Daten gebracht, und die aus der Theorie erhaltenen Kriterien fiir die ifbertragbarkeit 
werden gepruft. Das Einsetzen eines instabilen Flusses, der ungleichformige innere 
Spannungsmuster (Adern) in kalanderten Platten hervorruft, wird an Hand der Weisen- 
berg-Zahl diskutiert. Gute und schlechte Kalanderbereiche fur ein Polymeres werden 
qualitativ an Hand eines dynamischen Reaktionsdiagrammes erortert, und die Wichtig- 
keit der Gesamtbedingungen des Kalanderns fur die Endqualitat der Platten wird dis- 
kutiert. 
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